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A new approach to determine stability of multiple steady-state similarity solutions 
corresponding to laminar flows is introduced and applied to laminar flows in cold, 
pure water at temperature T, "C (near 4 "C) adjacent to a vertical, isothermal, plane 
surface at temperature T, "C when 0 < R = (4-T,)/(q-Tm) < 0.5, the region of 
buoyancy-force reversals. The results show that the steady-state similarity solutions 
recently found in this region by El-Henawy et al. (1982) are unstable, and thus should 
not be observed experimentally; while those solutions found earlier by Carey, 
Gebhart & Mollendorf(l980) may be stable. No unstable modes corresponding to their 
solutions were found. Some flows for R in the range of strong buoyancy-force 
reversals, 0.14 < R < 0.32 at  Prandtl number Pr = 11.6, have been observed, for 
example at R = 0.143,0.254 and 0.317 by Carey & Gebhart (1981) and Wilson & Vyas 
(1979). The latter found time-varying flows in this region of strongest flow reversals. 

The advantages of the method introduced are reduction of mathematical short- 
comings of the traditional approach and relative ease of numerical calculation of 
the real eigenvalues and eigenfunctions. The disadvantage is that information on 
downstream, selective frequency, exponential growth of amplitude is lost. The theory 
presented may be regarded as an asymptotic limit of the standard hydrodynamic 
theory as the frequency of perturbations approaches zero. 

1. Introduction 
The stability characteristics of boundary-layer flows in pure or saline water close to 

its temperature of maximum density T, "C are of particular interest, for then the local 
temperature T "C of the water relative to T, strongly influences the velocity and 
temperature profiles of the steady-state similarity solutions and the experimentally 
observed flows; see Wilson & Vyas (1979), Carey & Gebhart (1981), Sammakia (1981) 
and El-Henawy et al. (1982), and figure 1. For the similarity solutions corresponding 
to the laminar flow of cold, pure water adjacent to an isothermal, semi-infinite flat 
plate (seefigure2) thisoccursforR = (Tm-T,)/(T,-Tm) close toeither0.151 or0.292. 
For T, = 0 "C and T, = 4.029325 "C this means that the initial temperature of still, 
cold, pure water is close to either 4.7460 "C or 5.6911 "C. Moreover, for R in each of 
the ranges (0.15148, 0.15180) and (0.29181, 0.45402), corresponding to T, in the 
ranges (4.74865 "C, 4.75044 "C) and (5.6886 "C, 7.3800 "C), multiple solutions of the 
similarity equations were found by El-Henawy et al. (1982). Some pairs of these 
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RQURE 1. The effect of specified temperatures T, and T, on R, on the buoyancy force B(T) and 
on flow direction. T,, T, and T, are the temperatures of the isothermal plate, of the ambient water, 
and at which water has maximum density. The subscripted variables p are the corresponding 
densities. (a) B > 0, R < 0, and the flow is up; (b) B < 0, R > 0, and the flow is down; (c) B < 0,  
R = +, and the flow is down; and (a) B > 0,  R = 0, and the flow is up. 
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FIGURE 2. The coordinate systems: (a) upflow, (a) downflow. 



Stability of perturbations of buoyancy-induced flows 3 

1 '  

0.151 80 0.291 80 R 

0.15180 0.291 80 R 

FIGURE 3. Variation of P( co) and - W(0)  with R (base flows). 

existing at the same R > 0.292 have distinctly different velocity and temperature 
profiles, including vastly different heat-transfer rates at the vertical surface. If flows 
with dramatically low heat-transfer rates are observable in the laboratory, then it 
might be possible to take advantage of the conditions that cause them in technological 
applications. Both Wilson t Vyas (1979) and Carey & Gebhart (1981) observed flows 
in the range (5.69 "C, 7.38 "C), for example at 5.9 "C. Wilson & Vyas wrote ' It is noted 
that oscillations become appreciable exactly within the dual flow regime. . . '. Carey 
& Gebhart found the flow to depart from numerical predictions at 4.7 "C except close 
to the ice wall. 

In view of the uncertainties about the nature of the flows of pure water in the region 
of strong buoyancy-force reversals (4.7-7.38 "C) and the numerical discovery of 
multiple steady-state solutions in this range, both more experimental work and 
analysis are needed. The stability of the multiple steady-state solutions, which has 
not been studied previously, and the implications the results have for actual flows 
are the object of our investigation. As will be seen, the approach we follow is widely 
applicable to problems for which multiple steady-state solutions are found. In brief, 
our results indicate that the solutions with strong velocity reversals and very low 
heat-transfer rates are not stable in time to small perturbations. Our results for the 
stability of laminar, steady-state flows of cold, pure water adjacent to a vertical, 
semi-infinite, flat, isothermal surface (hereafter called Problem S) are best described 
in terms of bifurcation diagrams for the two known families of steady-state solutions 
( F ( T ) , @ ( ~ ) )  of (1.7) below, one existing for R < 0.1518 (largely upflow), the other 
existing for R > 0.2918 (largely downflow), see figure 3 (a ,  b). We show in 52 that the 
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steady-state solutions, which exist for R < 0.1518 and which correspond to points 
(R, F(co)) in the bifurcation diagram 3(a) with F(co) below its value (approximately 
0.045) at N,,  are unstable (at least one eigenvalue of the associated linear system (1.9) 
below is positive). We believe that those solutions corresponding to  points with F( co) 
above its value at N ,  may be stable (we found no eigenvalue h that  is positive there). 
We also show in $2 that  the steady-state solutions, which exist for R > 0.291 and 
which correspond to  points (R,  - Q'(0)) in the bifurcation diagram figure 3 (b) with 
-@' (O)  below its value (approximately 0.493) at N ,  are unstable (we found one 
positive A) ,  and those with @'(O)  above its value at N may be stable (we found no 
positive h there). 

For the family of solutions that exists for R < 0.16, we found three eigen- 
values h = A,(R, F( 0 0 ) )  with eigenvectors K(q), # l ( q ) )  (i = 1 ,  2, 3). For i = 1 and 2, 
A,(R, F( co)) changes its algebraic sign at the nose Ni in figure 3 (a). We did not find 
a third nose N ,  at which h,(R, F(oo))  changes its algebraic sign, but we conjecture 
that such a nose exists. 

Among the many previous experimental or numerical studies of Problem S 
(including various fluids and either a uniform flux or isothermal boundary condition) 
are those by Nachtsheim (1963), Polymeropoulos & Gebhart (1967), Knowles & 
Gebhart (1968), Dring & Gebhart (1968, 1969), Gill & Davey (1969), Vliet & Liu 
(1969), Jaluria & Gebhart (1974), Gebhart (1979), Qureshi (1980), Higgins (1981), and 
(a contemporary study) Hwang, Kazarinoff & Mollendorf (1984). Nachtsheim made 
a thorough and skilful analysis of the isothermal-plate problem in the Boussinesq case 
(buoyancy force linear in 7'). The experimental results of Polymeropoulos & Gebhart 
confirmed Nachtsheim's numerical results within reasonable limits. Qureshi was the 
first to compute neutral-stability curves using the nonlinear buoyancy-force function 
of Gebhart & Mollendorf (1977). He did this for the no-flux boundary condition for 
saline water at R = 0 and compared the results with experimental data. Higgins 
computed the neutral-stability curve and contours of constant amplification a t  
R = 0.4 for Problem S. She also verified, within rough limits, her theoretical results 
with experiments. Hwang et al. determined neutral-stability curves of the same 
problem.for 0.291 81 < R < 0.34 and found that, as one descends to below the nose 
N in figure 3 ( b ) ,  the corresponding solutions are amplified ever closer to the leading 
edge of the plate. All the numerical analyses cited above have implemented what we 
call here the traditional or conventional approach t o  hydrodynamic stability (Drazin 
& Reid 1981 ; Lin 1955). 

Our approach is distinctly different from the conventional one, as will be seen 
below. The Problem S studied here is the stability of steady-state, similarity 
solutions of the Navier-Stokes-energy system 

p(us+vy) = 0, (1.la) 

1 
Ut + UU, + vuY = - -pz  + u AU + B( T), 

P 
( l . l b )  

( l . l c )  

T,+uT,+vT, = &AT, ( l . ld )  

u ( z , O , t )  =v(z ,O, t )=T(z ,O, t ) -T,=T(x,co, t ) -T,  =u(x,co, t )=O, ( l . l e )  

where T is the temperature at (x, y, t ) ,  B(T)  denotes buoyancy force, x and y are 
coordinates respectively parallel and perpendicular to the vertical, isothermal surface 
y = 0 (see figure 2), t is time, u and v are respectively the vertical and horizontal 

1 

P 
vt +UV,+VV~ = --py + v Av, 
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components of fluid velocity at (x, y, t ) ,  p is the motion pressure at (x, y, t )  and p 
is the (constant) density of pure water at  temperature T. 

The buoyancy force B(T)  has been fitted to data by Gebhart & Mollendorf (1977) 
to within 3.5 p.p.m. accuracy for pure water. In terms of 

their formulation is 

where for pure water at  1 bar 

q = 1.894816, a = (9.297 173 x 10+ O C ) *  and T, = 4.029325 "C. 

Also, g = 9.81 m/s2, and v 'v 1.67 x mz/s. In (1.3) the + sign is used for base 
(steady-state) flows that are largely upflow (see figures l a  and 2a) which occur for 
R < 0.151 80, and the - sign is used for base flows that are largely downflow (see 
figures 1 b and 2b) which occur for R 2 0.291 81. 

We begin our analysis of Problem S for (l . l) ,  with B(T) as in (1.23), by making 
a similarity transformation from (x, y, t)  to (7, 7 )  defined by 

where C,  is a constant to be determined later, which will non-dimensionalize 7 ,  and 
the Grashof number G is defined to be 

G = 4[f &(x, T,)]i 

(1.5) with 

We also choose a stream function $ so that, as usual, u = $z and v = - $.,. In  addition 
to $, given by (1.2), we define new dependent variables f and P in terms of (7, 7 )  by 

(1.6) 

We rewrite (1.1) in terms of these new dependent and independent variables and 
in writing each equation we neglect terms of order GW2 compared with other terms 
in the same equation, exactly as was done by El-Henawy et al. (1982). In  the 
traditional approach the parallel-flow hypothesis is used, and terms of order 1/G are 
neglected; see Hieber & Gebhart (1971). The truncated similarity equations, which 
are derived from (1.1) using (1.2)-( 1.5), are : 

f q T + 2 f ; - 3 f f , q + 2 7 ~ q q f T - f q f q T >  =fq,,+{I$-RIQ-IRIq), ( 1 . 7 ~ )  

G(z, T,) = - 7 ~ ~  ccg IT,-T,I*. 

$(x, y, t)  = .Gf(r, 71, P(7 ,7 )  = p (FGY - P(X, y, t) .  

f T  - 7 f , T  - 27fT7 + 9ff, - 7f; - 37ff,, - 47fTf7 - 47YTT - 277vq7 f q  - fqq  f T >  

= - p, +7f,,q - f q l r + 6 7 f f ~ - 4 7 Y T f q T + 2 f , q T ,  (1-7b)  

Pr( - 3f$, + $7 - 27 {$Tf7)  - f T  $qH = $?/q, ( 1 . 7 ~ )  

with boundary conditions 

f ( 0 , T )  =f,(0,7) = $ ( O , T ) - l  = 0, f,(m,7) = $(m,7) = 0, P(m,7)  = 0. ( l .7d)  

In ( 1 . 7 ~ )  Pr = v/& is the Prandtl number, chosen to be 11.6 throughout. We have 
also chosen C ,  = t [gcz 1%- T,l*]k This non-dimensionalizes 7 and makes the coefficient 
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of the buoyancy-force term in ( 1 . 7 ~ )  equal to 1. We note that, once $ and f are found 
from (1.7a, c, d), then (1.7b) can be integrated with respect to 7 to determine P. The 
constant of integration P is proportional to F(m). We set (1.7b) aside for the 
remainder of this paper. 

Our next step is to linearize (1.7) about a steady-state solution (F, @) whose 
stability we seek to study. To do this we specify our class of perturbations; namely, 
we choose 

where 8 is positive and small. We replacef and $ in (1.7) by the right-hand members 
of (1.8), divide by 8,  let e+O, and divide by eh7. The result is the following linear 
system of fifth order for $, 6) : 

f ( T ?  7 )  = P(7)  +8eA7.7((r), $(T> 7 )  = @(7) +k+6(7), (1.8) 

~J,+2W$,P--,xJ =Jqtlr+3(F,,J+FJ,,,)-4F,~,f~ sign (@-R) (l@-Rlq-16)9 
(1.9a) 

Pr[h6-2h7(F,6-@,J)--(F6,+@,3)1= 6,,,, (1.9b) 

with boundary conditions 

6(0) =.m = J 7 ( O ) ,  J , ( 4  = 6 ( 4  = 0. 

We seek to solve this fifth-order system for real eigenvalues h and real eigenvectors 

As is the case when following the traditional approach, the linear eigenvalue 
problem that we have obtained above is not well posed; 7 appears explicitly in the 
coefficients. However, we fix 7 and proceed to solve (1.9) just as in the conventional 
approach one fixes 5, which appears in the coefficients of the linear system to be 
solved, and proceeds. We tested the solutions for their sensitivity to 7 ,  and found that 
both the eigenvalues and eigenvectors obtained were not sensitive to changes in 7 

for 0 < 7 < 200; see tables 1 and 2. 
We close this section by making a comparison between the two approaches to 

solving Problem S and suggesting some possible other applications of ours. Although 
we neglect terms of order G-2 and do not invoke the parallel-flow hypothesis, our 
approach has the disadvantages that it is still not mathematically rigorous and 
downstream amplification of disturbances at  a rate dependent upon the frequency 
ofthe disturbance is lost (cf. Gebhart 1969; Haaland & Sparrow 1973). However, there 
are off-setting advantages. The first is a general one. The stability system (1.9) which 
we obtain for real-valued perturbations is of order six after one adds the trivial 
equation A, = 0 and a sixth (normalizing) boundary condition. Following the 
traditional approach, one uses complex-valued perturbations and obtains a real- 
valued system of order 12. In addition, there are three parameters to be found: a 
real ' frequency ' B, a disturbance ' wavenumber ' Re (a) and a downstream ' growth 
rate' Im (a). If Im(a) and z are fixed, i t  is difficult to solve the system of order 14 
numerically over the range of R desired; see, for example, Hwang et al. (1985). This 
is so because, in the case at issue, (i) i t  is necessary to solve the stability equations 
on intervals ( 0 , ~ )  over which the base flows have been accurately computed, and this 
means value of 7 = 200 for R close to 0.151 or 0.292; and (ii) the linear-stability 
problem is troublesome to solve when of high order because the boundary conditions 
are nearly all homogeneous. In computing the new stationary solutions El-Henawy 
et al. (1982) found that much larger values of 7 were required than those used by 
Carey et al. (1980) to compute base flows. Moreover, in previous studies using the 
technique of fitting asymptotic tails, Hieber t Gebhart (1971), Qureshi (1980) 

(.L $1. 
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7 

0 
0.5 
1 .o 
2.0 
5.0 

10.0 
20.0 
50.0 

100.0 
150.0 
200.0 

A,(0.151 775, 0.050) 

-0.321907 x lo-' 
-0.319652 x lo-' 
-0.317417 X lo-' 
-0.313005 x lo-' 
-0.300457 x lo-' 
-0.281576 X lo-' 
-0.249280 x lo-* 
-0.183688 x lo-' 
-0.126613 x lo-* 
-0.972309 x lo-' 
-0.777365 x 

Al(O. 151 788, 0.042) 

0.232 845 x 
0.230691 x 
0.228580 x 10-2 
0.224476 x lo-' 
0.213045 x 
0.196477 x 
0.170 252 x 
0.122 124 x lo-* 
0.834 114 x lop3 
0.714213 x 
0.512604 x 

TABLE 1. The dependence of the eigenvalue A,, evaluated at R = 0.151775, F ( w )  = 0.05, upon 7 

(column 2), and the dependence of the same eigenvalue A, evaluated at F ( w )  = 0.042, R = 0.151 788 
upon 7 (column 3). All computations done at T~ = 200.0. 

7 ~(0.291829, 0.5) ~(0.291897, 0.48) 

0 
0.5 
1 .o 
5.0 

10.0 
50.0 

100.0 
200.0 

-0.385432 x to-' 
-0.386239 x lo-' 
-0.388972 x lo-' 
-0.396233 x lo-' 
-0.409314 x lo-' 
-0.423932 x lo-' 
-0.439322 x lo-' 
-0.401 239 x lo-' 

0.695293 x lo-' 
0.703256 x lo-' 
0.720093 x lo-' 
0.756245 x lo-' 
0.758521 x 
0.762839 x lo-' 
0.771 003 x lo-* 
0.763994 x lo-' 

TABLE 2. The variation of y(R,  - @ ' ( O ) )  with 7 for two points (R, -@'(O))  near to N in figure 3 

and Higgins (1981) integrated in from q with 7 = 14 or 20 (Hieber & Gebhart), 
q = 8 (Qureshi), and 7 = 3 or 5 (Higgins). Even if one employs asymptotic tails, 
substantially larger values of 7 are required. Our use of real-valued perturbations 
means, not only in the present application but in general, a gain by a factor of two 
in the order of the linear-stability system to be solved over the order of the linear 
system for the real and imaginary parts of complex-valued perturbations used in the 
traditional approach. 

A second advantage of the present analysis over the traditional one is specific to 
the application at hand. If one uses the buoyancy-force function B(T) defined in (1.3), 
eliminates p from (1.1) by taking the curl of (1.1 b , c ) ,  and then linearizes about a 
base flow, the function B(T)  is differentiated twice. But the exponent q in (1.2) lies be- 
tween 1 and 2. Thus there is a singularity in the coefficients of the linear-stability sys- 
tem obtained at a value of 7 for which @ ( v )  = R, and since @ decreases monotonically 
from 1 to 0 on ( 0 , ~ )  such a value of R exists for every R within (0.0, 0.5), the 
range of greatest interest. The present approach does not create such a singularity. 

In  summary, we believe that our approach has advantages that compensate for its 
disadvantages, both for the present application and potentially in other laminar- 
fluid-flow problems where multiple steady-state solutions have been found ; for 
example, by Gebhart et al. (1983) for a problem involving porous media, by Brady 
& Acrivos (1981, 1982), Brady (1984), Durofsky & Brady (1984) for flow in an 
accelerating pipe, and by Gill et al. (1985a,b) for surface-tension-driven flow of 
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vm A1(0.151 775. 0.050) A,(0.151788, 0.042) 

40.0 -0.258934 x lo-' 0.21 1941 x lo-' 
60.0 -0.261 210 X lo-' 0.208 135 x lo-' 

100.0 -0.269591 X lo-' 0.204 128 x lo-' 
150.0 -0.276518 x lo-' 0.200 158 x lo-' 
200.0 -0.281 576 X lo-' 0.196470 x lo-' 

TABLE 3. The dependence of the eigenvalue A , ,  evaluated at  P( a) = 0.050, R = 0.151 775, upon 7, 
(column 21, and the dependence of the same eigenvalue A,, evaluated at F ( a )  = 0.042, 
R = 0.151 788, upon qrn (column 3). All computations done at T = 10.0. 

low-Prandtl-number fluids in various geometries. The method presented here can help 
to  select which of multiple steady states is stable to time-dependent perturbations. 
The bifurcation diagrams that describe multiple steady-state solutions typically have 
points of vertical tangency. Usually, where vertical tangencies are found in bifurcation 
diagrams for time-independent solutions, the real part of one eigenvalue changes sign 
as one follows the diagram through the point of vertical tangency. Contemporary 
bifurcation theory is replete with examples : see for example, Iooss & Joseph (1980) 
or Hassard, Kazarinoff & Wan (1981). 

2. Stability analysis and results 
We solved the linear system (1.9) together with the suspended trivial equation 

A, = 0 and a sixth boundary condition, specifying either f( 00) = 1 for R < 0.151 80 
or $ ( O )  = 1 for R 2 0.291 81. The eigenvalue problems thus obtained were solved, 
given (R, f(00)) or (R,  $&O)),  on a finite interval with boundary conditions a t  cx) 
imposed at 7 = 200. We chose 7 = 200 since this is the value that is acceptable for 
the steady-state solutions whose stability is the issue. 

The presence of 7 in the coefficients of the system (1.9) shows that the formal 
assumption (1.8) is not mathematically correct. Nevertheless, we have solved the 
eigenvalue problem (1.9) numerically, for fixed values of 7. We used two totally 
different computer codes. The first is COLSYS, collocation two-point-boundary-value- 
problem solver; see Ascher, Christiansen & Russell (1978). The second is BOUNDS, a 
multiple shooting, two-point-boundary-value-problem solver ; see Deuflhard (1980), 
Deuflhard & Bader (1982), and Bulirsch & Stoer (1966). COLSYS was chosen for its 
reliability and, in particular, because aftcr solving the steady-state problem for F and 
@ using COLSYS, one can store the spline nodes and coefficients, and subsequently 
evaluate F,  @ and their derivatives in a COLSYS subroutine APPSLN for use in solving 
(1.9). BOUNDS does not have this ability, since output from BOUNDS consists only of 
values of solution components a t  user-specified nodes. Using COLSYS to solve the 
eigenvalue problem for fixed 7 was straightforward. To use BOUNDS we included the 
subroutine APPSLN from COLSYS in our main driving program to give values of the 
coefficients in (1.9) at points called by BOUNDS. Both BOUNDS and COLSYS were run 
in FORTRAN 4.8 on a CYBER 174. The approximate run time per solution was 40 s for 
each code. 
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FIGURE 4. Details of the variation of P( 00) and - W(0)  with R. 
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3. Bifurcation diagrams and stability 
For R in [0.151486,0.151801] we found and computed three eigenvalues 

h = h d ( R , F ( ~ ) ,  7 )  (i = 1,  2, 3) 

and corresponding eigenvectors 

@A% 7)3 4c(.rr,7HT. 
Since 7 appears explicitly in the coefficients of the linear system (1.9), the eigenvalues 
and eigenvectors obtained depend parametrically upon 7.  However, this dependence 
is weak; see tables 1 and 2. In  fact, the dependence upon 7 becomes negligible in the 
neighbourhood of a 'nose ' a t  which h = 0, since 7 appears in the governing equations 
(1.9) only in the combination h7. This supports the formal assumption (1.8). In 
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FIGURE 6. For caption see p. 12. 
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-0.2 ! 1 I I I 1 I I I I 1 
0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 

9 

FIGURE 6. Base flows (F, @) and corresponding eigenvector componenJs (1st mode; curves marked 
with crosses) (f, 6) a t  R = 0.151 775 and F ( c o )  = 0.050: (a) @ and 4, (b) @’ and $’, (c) F andf,  
(d) F’ a n d y .  

-0.2 A I 

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

9 

+ 

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 
9 

FIGURE 7(a) and ( b ) .  For caption see opposite. 
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FIGURE 7. Base flews ( F ,  @) and corresponding eigenvector components (2nd mode; curves marked 
with crosses) (f, q5) at R = 0.151486, P(c0) = 0.015: (a) @ and 4, ( b )  @’ and $, (c) F and!, ( d )  F 
and T. 
addition to the dependence upon r described above, we also tested A, for its response 
to changes in qffl for qm in the interval [40.0, 200.01 (see table 3), for 7 = 10.0. We 
did this for two points (R ,  F(ao))  close to the nose N, ,  namely (0.151 775, 0.050) and 
(0.151788, 0.042). The results show that A, is reasonably insensitive to changes in 
qffl. The corresponding eigenvectors change only in the fifth decimal place for these 
changes in 7 and qm. For R > 0.29, we found and computed just one eigenvalue 
p ( R ,  - @’(O), 7 )  for points (R,  - @’(O)) in the bifurcation diagram 4 ( b ) .  We tested for 
its sensitivity to 7 (see table 2). The dependence on 7 is weak, as expected near a 
‘nose’. We also found p to be reasonably insensitive to changes in qffl (table not 
shown). I n  the following computations, the values r = 10.0 and q = 200.0 were used. 
For brevity, we shall not show 7 as a parameter in subsequent formulae involving 
eigenvalues and/or eigenvectors. 

The eigenvalues hi (i = 1,2 ,3)  have the following properties. First, A,(R, F( 00)) = 0 
a t  (R, F( 0 0 ) )  N (0.151 801,0.0455), the nose N ,  in the bifurcation diagram figure 3 (a )  ; 
A,(R, F(oo)) < 0 for F(m) greater than its value a t  this nose; and A,(R, F ( o o ) )  > 0 for 
F ( w )  less than its value at this nose; see figures 4(a), 5(a ,  b ) .  Similarly, A,@, F(oo))  
= 0 a t  ( R ,  F(co)) N (0.151 486, 0.014), the nose N ,  in the bifurcation diagram figure 
3(a); A,(R,F(co))  < 0 for F(co) greater than its value at N , ;  and A,(R,F(co))  > 0 
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FIGURE S(a-r). For caption see opposite. 
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FIGURE 8. Base flows (F,  @) and corresponding eigenvector com onents (3rd mode; curves marked 
with crosses) (3, $) at R = 0.151735, F(co) = 0.037: (a)  @ and 8, (b )  @' and q?, (c) F and!, ( d )  P, 
andy. 

for F ( m )  less than its value a t  N , ;  see figures 4(a), 5(a,  b) .  The third eigenvalue 
A, (R, F(co)) is negative and increasing as F(m) decreases from 0.050 to 0.009; see 
figures 4(a),  5(a,  b). We conjecture (based upon figure 5 b )  that there exists a third 
nose N3 at a point (R, F( 0 0 ) )  with P(m) < 0.009 at which A,(R, F ( m ) )  = 0; but we 
were not able to find such a nose within what we judged to be a reasonable amount 
of computing effort. 

We conjecture that there are infinitely many noses existing for R < 0.16 in the 
complete bifurcation diagram that is partially given in figure 4(a) and that 
corresponding to the ith nose is an eigenvalue A,(R, p(00)) that vanishes at the ith 
nose, is negative for values of F(w) greater than its value at this nose, and is positive 
for all F ( w )  2 0 less than the value of F ( m )  at this nose. We also conjecture that 
all members of the family of steady-state solutions with F( 00) greater than its value 
at  the first nose N ,  are stable and all others with values of F ( m )  less than its value 
at N ,  are unstable. In  stating that a steady-state solution is stable we mean that small 
perturbations of the form (1.8) all decay exponentially to 0 as t ++ 00 for each fixed 
(2, y ) ,  and in stating that a steady-state solution is unstable we mean that the absolute 
value of some perturbations of the form (1.8) grows exponentially to + 00 as t + + 00 

for almost all fixed (z, y ) .  
The eigenvalue p ( R ,  - @'(O) )  changes sign at the unique nose N of the bifurcation 

diagram 4 ( b ) .  The nose lies at approximately (0.291808, 0.493): p < 0 for -@' (O)  
greater than its value at this nose, and p > 0 for -@'(O) less than its value at N; 
see figures 5(c ,d ) .  For -@'(O)  greater than its  value at the nose, we believe the 
steady-state solutions are stable, but lose stability as -@'(O) is decreased beyond 
0.493. 

To show how the eigenvector components vary with R and how they compare with 
the corresponding base-flow-solution components, we present figures 6-9. Figures 6-8 
cover the situation R < 0.16 (largely upflow), while figure 9 is for R > 0.29 (largely 
downflow). Figure 6 shows a solution for R = 0.151 75, and F ( m )  = 0.050, slightly 
below the first nose seen in figure 3 (a). The first eigenmode is shown with the base-flow 
solution because this mode causes the base flow to lose stability as P(co) decreases 
from above to below the first nose. The corresponding plots (not shown) for 
R = 0.151 75, but F ( w )  = 0.048, slightly below the nose, are virtually identical. 
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FIGURE 9(a) and ( b ) .  For caption see opposite. 

Analogous statements hold a t  the other noses. Figure 7 represents a solution for 
R = 0.151 1486 and F ( a )  = 0.015, slightly above the second nose seen in figure 3(a) .  
The second eigenmode is shown with the base-flow solution since the eigenvalue A, 
becomes positive as F(co)  decreases past the second nose. Figure 8 shows the base 
solution and the corresponding third eigenmode for a value F( CO) below the first nose 
but above the second nose. At this value of F ( c o ) ,  A, >0 ,  A, < 0 and A, < 0. A, 
remains negative as F( CO) is decreased past the second nose. We conjecture that A, 
becomes positive past a conjectured third nose. Figure 9 represents a solution on the 
upper side of the nose in figure 3 ( b ) .  The eigenmode shown with the base-flow 
solutions causes the loss of stability as - @'(O)  is decreased from above to  below the 
nose. 
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FIQURE 9. Base flows ( F ,  @) and corresponding eigenvector components (unique mode found; 
curves marked with crosses) (f, 6) at R = 0.291878, -@’ (0) = 0.505: (a) @ and 4, ( b )  @’ and 8, 
(c) F andf, ( d )  F’ and?. 

4. Discussion 
We first discuss the behaviour of our perturbations 

in terms of x ,  y and t and the vertical and horizontal components of the perturbed 
velocity cfi(x, y ,  t )  and cG(z, y, t )  and the perturbed temperature @(x, y ,  t ) .  These are 
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and 

Since G = const. x xi, for fixed t ,  .ii grows downstream as xi along streamlines 
7 = const., and v’ decays like x-i. Our allowed perturbations are not time-periodic, 
and the observed limiting behaviour of the conventionally studied ‘ time-periodic ’ 
disturbances 

I .  M .  El-Henawy, B. D .  Hassard and N .  D .  Kazarinoff 

a x ,  y ,  t )  = e[(T, -  T,) $J+ T,]. 

as the frequency p decreases to 0 is that IIm 011 becomes very small or zero; see Dring 
& Gebhart (1969), Hieber & Gebhart (1971), Qureshi (1980) and Higgins (1981), for 
example. (We write time-periodic in quotation marks because, although B is real, the 
factor xi multiplies t in the exponent above.) Thus, the non-exponential growth 
downstream of the disturbances that we have derived could be expected and is 
consistent with the results of others. On the other hand, for fixed (x, y )  our real-valued 
perturbations either grow exponentially with time or decay exponentially with time. 

Since reversals occur in the u-component of velocity of some steady-state solutions 
whose values of F(m)  are greater than F(m)  is at N in figure 1 (a)  (upflow) as well 
as in the u-component of velocity of some whose values of - W ( 0 )  are greater than 
is the value of -$ ’ (O)  at N in figure 1 (b )  (downflow) and since our results indicate 
that these steady-state solutions may be stable, it is not necessarily true that a 
steady-state solution which has either an inside or outside reversal in its u-component 
of velocity (as one looks across the boundary layer) is unstable. Furthermore, such 
solutions have two points of inflexion in their u-velocity profiles. Thus the ‘rule ’ that 
more than one point of inflexion in a u-velocity profile implies instability, may be 
incorrect in the present Problem S. 

In summary, the results discussed above lead to the following conclusions: the 
additional steady-state solutions recently found by El-Henawy et al. (1982) are 
unstable and are unlikely to correspond to physically observable flows. The previously 
known solutions for R < 0.152 and for R > 0.29 are likely to be stable; indeed, many 
of them have been observed (Carey & Gebhart 1981); and we have found no 
eigenvalues that indicate that they are unstable. These results are important in view 
of experimental evidence suggesting that there might be physical perturbations of 
the corresponding flows that make them wander around the steady states; Wilson 
& Vyas (1979), Carey & Gebhart (1981), Sammakia (1981). Our instability results do 
not rule out such behaviour. 

The authors acknowledge support from the following grants : NSF-MCS8106657 
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